\qquad

Course Outcomes

Organic Chemistry

Learning Outcomes:

- Compare and contrast inorganic and organic chemistry.

Include: the contributions of Friedrich Wöhler to the overturn of vitalism
\square Identify the origins and major sources of hydrocarbons and other organic compounds.

Include: natural and synthetic sources
\square Describe the structural characteristics of carbon.
Include: bonding characteristics of the carbon atom in hydrocarbons (single, double, triple bonds)
\square Compare and contrast the molecular structures of alkanes, alkenes, and alkynes. Include: trends in melting points and boiling points of alkanes only

- Name, draw, and construct structural models of the first 10 alkanes.

Include: IUPAC nomenclature, structural formulas, condensed structural formulas, molecular formulas, general formula $\mathrm{CnH}(2 n+2)$
\square Name, draw, and construct structural models of branched alkanes.
Include: six-carbon parent chain, methyl and ethyl substituent groups, IUPAC nomenclature
\square Name, draw, and construct structural models of isomers for alkanes up to sixcarbon atoms.
Include: condensed structural formulas
\square Outline the transformation of alkanes to alkenes and vice versa.
Include: dehydrogenation/hydrogenation, molecular models
\square Name, draw, and construct molecular models of alkenes and branched alkenes. Include: six-carbon parent chain, methyl and ethyl substituent groups, IUPAC nomenclature, structural formulas, condensed structural formulas, molecular formulas, general formula $\mathrm{C}_{n} \mathrm{H}_{2 n}$
\square Differentiate between saturated and unsaturated hydrocarbons.
\square Outline the transformation of alkenes to alkynes and vice versa.
Include: dehydrogenation/hydrogenation, molecular models

- Name, draw, and construct structural models of alkynes and branched alkynes. Include: six-carbon parent chain, methyl and ethyl substituent groups, IUPAC nomenclature, structural formulas, condensed structural formulas, molecular formulas, general formula $\mathrm{CnH} 2 \mathrm{n}-2$
\square Compare and contrast the structure of aromatic and aliphatic hydrocarbons. Include: molecular models, condensed structural formulas
\square Describe uses of aromatic hydrocarbons.
Examples: polychlorinated biphenyls, caffeine, steroids, organic solvents (toluene, xylene)...
\square Write condensed structural formulas for and name common alcohols. Include: maximum of six-carbon parent chain, IUPAC nomenclature
\square Describe uses of methyl, ethyl, and isopropyl alcohols.
Write condensed structural formulas for and name organic acids. Include: maximum of six-carbon parent chain, IUPAC nomenclature
\square Describe uses or functions of common organic acids.
Examples: acetic, ascorbic, citric, formic, acetylsalicylic (ASA), lactic...
\square Perform a lab involving the formation of esters, and examine the process of esterification.
\square Write condensed structural formulas for and name esters.
Include: up to 6-C alcohols and 6-C organic acids, IUPAC nomenclature
- Describe uses of common esters.

Examples: pheromones, artificial flavourings...
\square Describe the process of polymerization and identify important natural and synthetic polymers.
Examples: polyethylene, polypropylene, polystyrene, polytetrafluoroethylene (Teflon®)...
\square Describe how the products of organic chemistry have influenced quality of life. Examples: synthetic rubber, nylon, medicines, polytetrafluoroethylene (Teflon®)...
\square Use the decision-making process to investigate an issue related to organic chemistry.
Examples: gasohol production, alternative energy sources, recycling of plastics...

Labs:

\square Constructing Models of Hydrocarbons

- Esterfication
- The Slime Lab!

Course Outcomes

 Physical Properties of Matter
Learning Outcomes:

- Describe the properties of gases, liquids, solids, and plasma.

Include: density, compressibility, diffusion

- Use the Kinetic Molecular Theory to explain properties of gases.

Include: random motion, intermolecular forces, elastic collisions, average kinetic energy, temperature

- Explain the properties of liquids and solids using the Kinetic Molecular Theory.

Explain the process of melting, solidification, sublimation, and deposition in terms of the Kinetic Molecular Theory.
Include: freezing point, exothermic, endothermic

- Use the Kinetic Molecular Theory to explain the processes of evaporation and condensation.

Include: intermolecular forces, random motion, volatility, dynamic equilibrium

- Operationally define vapour pressure in terms of observable and measurable properties.
Operationally define normal boiling point temperature in terms of vapour pressure.
- Interpolate and extrapolate the vapour pressure and boiling temperature of various substances from pressure versus temperature graphs.

Labs:

- Measuring the Vapour Pressure of a Liquid
- Identify Products of a Chemical Reaction
\qquad Date: \qquad

Course Outcomes Chemical Reactions

Learning Outcomes:

\square Determine average atomic mass using isotopes and their relative abundance.
Include: atomic mass unit (amu)
\square Research the importance and applications of isotopes.
Examples: nuclear medicine, stable isotopes in climatology, dating techniques...
\square Write formulas and names for polyatomic compounds using International Union of Pure and Applied Chemistry (IUPAC) nomenclature.
\square Calculate the mass of compounds in atomic mass units.

- Write and classify balanced chemical equations from written descriptions of reactions.
Include: polyatomic ions
\square Predict the products of chemical reactions, given the reactants and type of reaction.
Include: polyatomic ions
\square Describe the concept of the mole and its importance to measurement in chemistry.
- Calculate the molar mass of various substances.
\square Calculate the volume of a given mass of a gaseous substance from its density at a given temperature and pressure.
Include: molar volume calculation
\square Solve problems requiring interconversions between moles, mass, volume, and number of particles.
\square Determine empirical and molecular formulas from percent composition or mass data.
\square Interpret a balanced equation in terms of moles, mass, and volumes of gases.
- Solve stoichiometric problems involving moles, mass, and volume, given the reactants and products in a balanced chemical reaction.
Include: heat of reaction problems
I Identify the limiting reactant and calculate the mass of a product, given the reaction equation and reactant data.
- Perform a lab involving mass-mass or mass-volume relations, identifying the limiting reactant and calculating the mole ratio.
Include: theoretical yield, experimental yield
- Discuss the importance of stoichiometry in industry and describe specific applications.
Examples: analytical chemistry, chemical engineering, industrial chemistry...

Labs:

- Formula of a Hydrate
\qquad

Course Outcomes Solutions

Learning Outcomes:

\square Describe and give examples of various types of solutions.
Include: all nine possible types
\square Describe the structure of water in terms of electronegativity and the polarity of its chemical bonds.
\square Explain the solution process of simple ionic and covalent compounds, using visual, particulate representations and chemical equations.

Include: crystal structure, dissociation, hydration
\square Explain heat of solution with reference to specific applications. Examples: cold packs, hot packs...
\square Perform a lab to illustrate the formation of solutions in terms of the polar and nonpolar nature of substances.
Include: soluble, insoluble, miscible, immiscible
\square Construct, from experimental data, a solubility curve of a pure substance in water.
\square Differentiate among saturated, unsaturated, and supersaturated solutions.
\square Use a graph of solubility data to solve problems.
\square Explain how a change in temperature affects the solubility of gases.
\square Explain how a change in pressure affects the solubility of gases.
\square Perform a lab to demonstrate freezing-point depression and boiling-point elevation.

Explain freezing-point depression and boiling-point elevation at the molecular level.

Examples: antifreeze, road salt...
\square Differentiate among, and give examples of, the use of various representations of concentration.

Include: grams per litre (g / L), \% weight-weight (\% w/w), \% weight-volume (\% w / v), \% volume/volume (\% v/v), parts per million (ppm), parts per billion (ppb), moles per litre (mol/L) (molarity)
\square Solve problems involving calculation for concentration, moles, mass, and volume.
\square Prepare a solution, given the amount of solute (in grams) and the volume of solution (in millilitres), and determine the concentration in moles/litre.
\square Solve problems involving the dilution of solutions.
Include: dilution of stock solutions, mixing common solutions with different volumes and concentrations
\square Perform a dilution from a solution of known concentration.
\square Describe examples of situations where solutions of known concentration are important.
Examples: pharmaceutical preparations, administration of drugs, aquaria, swimming-pool disinfectants, gas mixes for scuba, radiator antifreeze...
\square Describe the process of treating a water supply, identifying the allowable concentrations of metallic and organic species in water suitable for consumption.

Labs:

\square Saturated, Unsaturated and Supersaturated Solutions
\square Concentrations and Dilutions
\square Freezing Point Depression
\qquad

Course Outcomes Gases and the Atmosphere

Learning Outcomes:

\square Identify the abundances of the naturally occurring gases in the atmosphere and examine how these abundances have changed over geologic time.

Include: oxygenation of Earth's atmosphere, the role of biota in oxygenation, changes in carbon dioxide content over time
\square Research Canadian and global initiatives to improve air quality.
\square Examine the historical development of the measurement of pressure.
Examples: the contributions of Galileo Galilei, Evangelista Torricelli, Otto von Guericke, Blaise Pascal, Christiaan Huygens, John Dalton, Joseph Louis Gay-Lussac, Amadeo Avogadro...
\square Describe the various units used to measure pressure.
Include: atmospheres (atm), kilopascals (kPa), millimetres of mercury (mmHg), millibars (mb)
\square Experiment to develop the relationship between the pressure and volume of a gas using visual, numeric, and graphical representations.

Include: historical contributions of Robert Boyle
\square Experiment to develop the relationship between the volume and temperature of a gas using visual, numeric, and graphical representations.
Include: historical contributions of Jacques Charles, the determination of absolute zero, the Kelvin temperature scale
\square Experiment to develop the relationship between the pressure and temperature of a gas using visual, numeric, and graphical representations. Include: historical contributions of Joseph Louis Gay-Lussac
\square Solve quantitative problems involving the relationships among the pressure, temperature, and volume of a gas using dimensional analysis.

Include: symbolic relationships

- Identify various industrial, environmental, and recreational applications of gases.

Examples: self-contained underwater breathing apparatus (scuba), anaesthetics, air bags, acetylene welding, propane appliances, hyperbaric chambers...

Labs:

B Boyle's Law

- Cartesian Diver
\square The Density of Carbon Dioxide

