405 Chemistry Solubility

1

Outcomes	
Describe and write a balanced chemical equation to represent the equilibrium in a saturated aqueous solution of an ionic compound.	
Write a solubility product expression, given balanced chemical equation for a solubility reaction.	a
Distinguish between solubility and solubility product constant(K _{sp}).	
Calculate the solubility product, given the solubility of a compound in water, and vice versa.	

Introduction

- When placed into water, slightly soluble substances establish an equilibrium between the solid and dissolved ions in a saturated solution. This equilibrium is described by the solubility product.
- Using the solubility product, we can calculate the ion concentrations and the solubility of the substance.

Solubility

- Solubility and solubility product are two different terms.
- Solubility is the maximum amount of solute that can dissolve in a certain amount of solvent at a certain temperature.
- Solubility has an infinite number of possible values, depending on temperature and other solutes present.

40S Chemistry Solubility Rules

Step 2: Determine the concentration of the PbCl₂. PbCl₂ = 207.19g/mol + 2(35.45g/mol) = 278.09g/mol 0.57g PbCl₂ x <u>1 mol PbCl₂</u> = 0.00204 mol PbCl₂ 278.09g PbCl₂ $M = \frac{mol}{l} = \frac{0.00204 \text{ mol PbCl}_2}{1.5L} = 1.37 \times 10^{-3} \text{ mol/L}$

Does a Precipitate Form?

Example 5

If 20.0 mL of a 0.0010 mol/L silver nitrate solution is mixed with 20.0 mL of a 3.0×10^{-5} mol/L potassium bromide solution, does silver bromide (K_{sp} = 5.0×10^{-13}) precipitate? Assume the volumes are additive.

Introduction

- we have studied the solubility of ionic solids in pure water and precipitates from mixtures.
- What happens to solubility of an ionic compound if the water contains an ion in common with the ionic solid?

45

Common Ions

- When an ionic compound dissolves in pure water, the initial concentration of each ion is zero.
- If an ionic compound dissolves in a solution that has an ion in common with the compound, this is not the case.
- Even though the starting concentrations may not be zero, the product of the ions must still equal the solubility product constant.

Solution Step 1: Solubility of AgCl in pure water. $AgCl(s) \quad Ag\frac{L}{L}dq) + Cl^{-}(aq)$ $Ksp = [Ag^{+}] [Cl^{-}] = 1.7 \times 10^{-10}$ $[Ag^{+}] = [Cl^{-}] = x$ x = molar solubility $(x) (x) = 1.7 \times 10^{-10}$ $x^{2} = 1.7 \times 10^{-10}$ $x^{2} = 1.3 \times 10^{-5}$ Since [AgCl] = x, the solubility of AgCl in pure water is 1.3 x 10^{-5} mol/L.

55

Solubility in the Presence of a Common Ion

Example 2

The K_{sp} of lead (II) chloride, PbCl₂, is 1.6 x 10⁻⁵. What is the solubility of lead (II) chloride in a 0.10 mol/L solution of magnesium chloride, MgCl₂?

Example 3

The K_{sp} of lead (II) chloride is 1.6 x 10⁻⁵. What is the solubility of lead (II) chloride in a 0.10 mol/L solution of lead (II) nitrate, Pb(NO₃)₂?

