

Writing the Equilibrium Law

- Homogeneous equilibria are those in which the reactants and products are all in the same phase, gases (g) or aqueous (aq).
- Heterogeneous equilibria
 involve reactants and products
 in more than one state.

Solution

To solve this problem, it is best to set up a table recording: initial concentrations (I) change in concentrations (C) equilibrium concentrations (E) ICE for short . . .

		H ₂ +	F ₂	⇔ 2HF
Insert initial concentrations	Ι	1.00	1.00	0
	С			
	E			

		H ₂ +	F ₂	⇔ 2HF			
	Ι	1.00	1.00	0			
	С	- 0.66	- 0.66	+ 1.32			
	Ε	0.34	0.34	1.32			
Substitute the equilibrium concentrations into the equilibrium law and solve for Kc: $K_{c} = \frac{[HF]^{2}}{[H_{2}][F_{2}]} = \frac{(1.32)^{2}}{(0.34)(0.34)} = \frac{1.742}{0.1156}$ $K_{c} = 15.1$							

Example

 When given initial concentrations and the equilibrium constant, we can calculate the equilibrium concentrations of all reactants and products for many equilibrium systems.

Since we do not know the equilibrium concentrations of any of the species we insert x for the amount of N_2 and O_2 consumed and 2x for the amount of NO produced.				
	N ₂ +	O ₂	⇔ 2NO	
Ι	6.0	6.0	0	
С	- X	-X	2x	
Е	6.0 - x	6.0 - x	2x	

<section-header>

For the reaction:

 $N_2(g) + 3 H_2(g) \Leftrightarrow 2 NH_3(g)$ a) What is the effect on the equilibrium if the size of the container is cut in half, but the number of particles and temperature remain unchanged?

Steps for Solving Le Chatelier's Principle Problems

- Identify the stress.
- Tell what the system does to reduce the stress.
- Indicate which concentrations increase and which ones decrease.
 - Indicate whether the equilibrium shifts left, right, or has no change.

