

Introduction

- Very few reactions actually proceed to completion.
- Many proceed in both directions, left to right AND right to left.
- At equilibrium, the [] of both reactants and products remains constant.

Outcomes

- Define the concept of equilibrium.
- Explain solubility using the concept of solubility.
- Explain the factors affecting solubility using the concept of equilibrium.
- Write chemical equations to describe solution equilibria.
- Distinguish between a system at equilibrium and one not at equilibrium.

Overview

- Defining Equilibrium
- Liquid-Vapour Equilibrium
- Solubility Equilibrium
- Physical Equilibria

Defining Equilibrium

- Evaporation in open container
- Particles evaporate until all liquid has evaporated.

Open Container

Dynamic Equilibrium

- Opening sealed.
- Particles evaporate and condense at a constant rate.
- This balance is called a dynamic equilibrium.

Closed Container

Dynamic Equilibrium

- A state of dynamic equilibrium exists where the rate of the forward process (evaporation) is equal to the rate of the reverse process (condensation).
- Chemists use a double arrow:
- Indicates the reaction is reversible - it proceeds both left to right and right to left.
- In a system at equilibrium, the reaction proceeds in BOTH directions simultaneously.

Conditions for Equilibrium

- Equilibrium can only occur in a closed system - no particles are allowed to enter or escape.

Solutions

- Dissolving of a solid substance in a solvent is usually a physical process.
- Solutions become saturated.
- No more solid will dissolve as long as the conditions, such as temperature remain constant.

Solution Equilibrium

- In a saturated solution, an equilibrium exists between the undissolved solute and the dissolved solute.
- It is known as solubility equillilbrium.

- Particles dissolve at the same rate that others leave solution.
- Chemists indicate this equilibrium using the following equation:

Sugar(s) \rightleftarrows Sugar (aq) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (s) $\rightleftarrows \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (aq)

Physical Equilibrium

- Any reversible physical process, in which the rate of the forward process equals the rate of the reverse process, is a physical equillibrium.
- Solid-liquid
- Solid-vapour
- Liquid-vapour
- Solubility

Lesson Summary

- Equilibrium occurs when the rate of the forward process = the rate of the reverse process in a reversible reaction.
- Equilibrium can only occur in a closed system.
- Equilibrium is dynamic.
- Liquid-vapour equilibrium occurs when liquid molecules enter and leave the liquid state at the same rate.
- Solution equilibria occur in saturated solutions in which solute remains undissolved.
- Physical equilibria are those occurring in physical changes.

Assignment

- Complete Chemical Equilibrium Assignment \#1

Homework Answer Key

1. $\mathrm{I}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})$
2. $\mathrm{Br}_{2}(\mathrm{I}) \rightleftarrows \mathrm{Br}_{2}(\mathrm{~g})$
3. $\mathrm{NaCl}(\mathrm{s}) \rightleftarrows \mathrm{NaCl}(\mathrm{aq})$ sodium chloride is ionic and separates into ions in water. The equation at equilibrium would then be

$$
\mathrm{NaCl}(\mathrm{~s}) \rightleftarrows \mathrm{Na}+(\mathrm{aq})+\mathrm{Cl}-(\mathrm{aq})
$$

4. At a substance's melting point there is an equilibrium between solid and liquid. The equation would be

$$
\mathrm{Au}(\mathrm{~s}) \rightleftarrows \mathrm{Au}(\mathrm{l})
$$

5. $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

At a substances boiling point, there is a liquid-vapour equilibrium.

Introduction

- Many chemical reactions are reversible.
- Reversible reactions, under the correct conditions, can also reach equilibrium.

Outcomes

- Identify conditions required for chemical equilibrium.
- Compare and contrast chemical equilibrium.
- Propose an analogy for chemical equilibrium.
- Define the equilibrium constant and mass action expression.
- Write equilibrium law expressions from balanced chemical equations.
- Relate concentration of reactants and products to the magnitude of the equilibrium constant.
- Calculate equilibrium constant, given experimental data.

Lesson Overview

- Reversible Reactions
- Characteristics of Chemical Equilibrium
- Defining Chemical Equilibrium
- The Equilibrium Law
- The Equilibrium Constant
- Calculating Kc
- Calculating Equilibrium []

Reversible Reactions

- chemical reactions in equilibrium can only be established in a closed system.
- Consider the reaction:

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

- NO_{2} : brown gas present in smog.
- $\mathrm{N}_{2} \mathrm{O}_{4}$: colourless gas produced as NO_{2} is exposed to UV rays.
- If NO_{2} is placed in a sealed container, eventually the brown colour fades but still persists, as long as conditions remain constant.
- Fading results from production of colourless $\mathrm{N}_{2} \mathrm{O}_{4}$.
- The brownish tint indicates the presence of NO_{2} in the container. The reaction does NOT go completely to products, but rests somewhere between.
- The equilibrium state is characterized by constant concentrations of both reactants $\left(\mathrm{NO}_{2}\right)$ and products $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$.
- The reaction is then written:

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

- The double arrow indicates the reaction is reversible. VIDEO

Characteristics of Chemical Equilibrium

In reversible reactions:

- conversion to products is the forward reaction
- conversion to reactants is the reverse reaction
- For a system at equilibrium, the rate of the forward reaction = the rate of the reverse reaction.

Defining Chemical Equilibrium

For the reaction

$$
\mathrm{aA}+\mathrm{bB} \rightleftarrows \mathrm{cC}+\mathrm{dD}
$$

- at equilibrium, the graph of concentration vs time may appear like this . . .

- The concentration of products and reactants are NOT necessarily equal.
- The rate of conversion to products = the rate of conversion to reactants.
- This is what makes the equilibrium dynamic.
- A graph of rate vs time would appear as ...

The Equilibrium Law

- Also known as the law of mass action.
- A relationship exists between the [reactants] and [products] at equilibrium.
- The equilibrium law is a ratio of [product] to [reactant].
- The value of this ratio is called the equilibrium constant, k_{c} or $\mathrm{k}_{\text {eq }}$.

For the reaction

$$
\mathrm{aA}+\mathrm{bB} \leftrightarrows \mathrm{cC}+\mathrm{dD}
$$

- the forward and reverse reactions are elementary reactions.
- Rate $_{\text {products }}=k_{p}[C]^{c}[D]^{d}$
- Rate $_{\text {reactants }}=\mathrm{k}_{\mathrm{r}}[A]^{a}[B]^{b}$

Therefore:

$$
\mathrm{k}_{\mathrm{r}}[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}=\mathrm{k}_{\mathrm{p}}[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}
$$

- By rearranging the expression to solve for rate constants,

$$
\mathrm{k}_{\mathrm{r}}[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}=\mathrm{k}_{\mathrm{p}}[\mathrm{C}]^{c}[\mathrm{D}]^{\mathrm{d}}
$$

Divide
both sides by $[A]^{a}[B]^{b}$

$$
\mathrm{k}_{\mathrm{r}}=\frac{\mathrm{k}_{\mathrm{p}}[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

$\underset{\text { both sides }}{\operatorname{Divide}} \quad \frac{k_{\mathrm{r}}}{\mathrm{k}_{\mathrm{p}}}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}$

- By rearranging the expression to solve for rate constants,
The ratio of rate constants is condensed to one constant, Kc, called the equilibrium

$$
\left(\frac{k_{r}}{k_{\mathrm{f}}}\right)=\frac{[C]^{\mathrm{c}}[D]^{d}}{[A]^{3}[B]^{3}}
$$

- The law of mass action becomes

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}}= & \frac{[C]^{c}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{2}[B]^{\mathrm{d}}} \\
& \text { or } \\
\mathrm{K}_{\mathrm{c}}= & \frac{\text { concentration of products }}{\text { concentration of reactants }}
\end{aligned}
$$

Writing the Equilibrium Law

- Homogeneous equilibria are those in which the reactants and products are all in the same phase, gases (g) or aqueous (aq).
- Heterogeneous equilibria involve reactants and products in more than one state.
- When writing the mass action expression, substances which are solids (s) or liquids (I) are omitted.
- Solids and liquids rarely change in concentration and are not included.

Example 1

Write the equilibrium law for the equation:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Solution:

All reactants and products are gaseous. the equilibrium law would be . .

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}
$$

Example 2

Write the equilibrium law for the equation:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftarrows \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Solution:

C is a solid and is omitted from the equilibrium law ...

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

- is the ratio of product concentrations to reactant concentrations.
- the only factor affecting K_{c} is temperature.
- can indicate whether products or reactants are favoured at equilibrium (whether there are more products or reactants at equilibrium).

Case 1:

If Kc = 1, [products] = [reactants].
Neither reactants or products are favoured.
Case 2:
If Kc > 1, the [product] > [reactant]. Products are favoured.
For example:
$A+B \vec{C}+D$ has a $K c=1 \times 10^{5}$ Mixing A and B results in almost a complete conversion to products C and D .

Case 3:
If Kc<1, the [product] < [reactant]. Reactants are favoured.

For example:
If the reaction $\mathrm{E}+\mathrm{F} \rightleftarrows \mathrm{G}+\mathrm{H}$ has a $\mathrm{Kc}=1 \times 10^{-5}$
Mixing E and F results in the formation of very little G and H .

Calculating K_{C}

- K_{c} can be calculated if you are given the [reactants] and [products] at equilibrium.
- Substitute the values into the equilibrium law . . .

Example

For the reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

At $225^{\circ} \mathrm{C}$, a 2.0 L container holds 0.040 moles of $\mathrm{N}_{2}, 1.5$ moles of H_{2} and 0.50 moles of NH_{3}.
If the system is at equilibrium, calculate KC.

Solution

Change all quantities into concentrations, mol/L.
Step 1:

$$
\begin{aligned}
& \text { Concentration }=\frac{\text { moles }}{\text { volume }}=\frac{n}{V} \\
& \mathrm{C}_{\mathbb{N}_{2}}=\frac{0.040 \mathrm{moles}}{2.0 \mathrm{~L}}=0.020 \mathrm{~mol} / \mathrm{L} \\
& \mathrm{C}_{\mathrm{H}_{2}}=\frac{1.5 \mathrm{moles}}{2.0 \mathrm{~L}}=0.75 \mathrm{~mol} / \mathrm{L} \\
& \mathrm{C}_{\mathrm{NH}_{3}}=\frac{0.50 \mathrm{moles}}{2.0 \mathrm{~L}}=0.25 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Step 2:

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \quad \begin{aligned}
& \text { Write the } \\
& \text { equilibrium law } \\
& \text { for the reaction }
\end{aligned}
$$

Step 3:

$$
\begin{array}{rll}
\mathrm{K}_{\mathrm{c}} & =\frac{(0.25)^{2}}{(0.020)(0.75)^{3}} & \begin{array}{l}
\text { Substitute the } \\
\text { concentration } \\
\text { values and }
\end{array} \\
& =\frac{0.0625}{\text { calculate K. }} \\
\mathrm{K}_{\mathrm{c}} & =7.4 & \begin{array}{l}
\text { Wote: no units for } \\
\text { EXTCH }
\end{array} \\
\text { K.0.0 }
\end{array}
$$

Calculating Equilibrium []

If given K_{c}, the concentration of one of the reactants or products can be calculated if the other values are given as well . . .

Example

For the following reaction at $210^{\circ} \mathrm{C}$, the Kc is 64.0 :

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NO}(\mathrm{~g})
$$

The equilibrium [] of N_{2} and O_{2} are $0.40 \mathrm{~mol} / \mathrm{L}$ and $0.60 \mathrm{~mol} / \mathrm{L}$, respectively.
Calculate the equilibrium concentration of NO.

Solution

Step 1:

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]} \quad \begin{aligned}
& \text { Write out the } \\
& \text { equilibrium law. }
\end{aligned}
$$

Step 2:
$[\mathrm{NO}]^{2}=\mathrm{K}_{\mathrm{c}}\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]$
Rearrange the
$[\mathrm{NO}]=\sqrt{\mathrm{K}_{\mathrm{c}}\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]}$
equilibrium law
to solve for [NO].

Step 3:

$$
\begin{aligned}
& {[\mathrm{NO}]=\sqrt{(64.0)(0.40)(0.60)}=\sqrt{15.36}} \\
& {[\mathrm{NO}]=3.9 \mathrm{~mol} / \mathrm{L}}
\end{aligned}
$$

Lesson Summary

- Most chemical reactions are reversible.
- Chemical equilibrium can only occur in a closed system.
- Equilibrium occurs when the rate of the forward reaction equals the rate of the reverse reaction.
- At equilibrium, [products] and [reactants] remains constant.
- The Equilibrium Law, Kc, is shown by

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\text { products }]}{[\text { reactants }]}
$$

- The Kc can be used to determine the equilibrium position.
- The equilibrium Law can be used to calculate the Kc when given [reactant] and [product].

Practice

- Write the equilibrium laws for each of the following reactions:
- $\mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)+\mathrm{NO}(g)$
- $2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
- $3 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
- $\mathrm{MgCO}_{3}(s) \Leftrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{MgO}(s)$
- $2 \mathrm{Bi}_{3}+(a q)+3 \mathrm{H}_{2} \mathrm{~S}(g) \Leftrightarrow 2 \mathrm{Bi}_{2} \mathrm{~S}_{3}(s)+6$ $\mathrm{H}+(a q)$
- $I_{2}(a q) \Leftrightarrow I_{2}(s)$
- $\mathrm{Cl}_{2}(g)+\mathrm{PCl}_{3}(g) \Leftrightarrow \mathrm{PCl}_{5}(g)$

Practice

Practice

Bromine chloride, BrCl , decomposes to form bromine and chlorine.

$$
2 \mathrm{BrCl}(g) \Leftrightarrow \mathrm{Cl} 2(g)+\mathrm{Br} 2(g)
$$

At a certain temperature the equilibrium constant for the reaction is 11.1, and the equilibrium mixture contains 4.00 mol of Cl 2 . How many moles of Br 2 and BrCl are present in the equilibrium mixture?

Practice

Find the value of K if at equilibrium there is 25.0 moles of $\mathrm{P}_{4}, 10.0$ moles of H_{2} and 5.00 moles of PH_{3}, in a 5.00 L container. The equation is

$$
\mathrm{P}_{4}(g)+6 \mathrm{H}_{2}(g) \Leftrightarrow 4 \mathrm{PH}_{3}(g)
$$

Homework Assignment

Complete Equilibrium Assignment \#2

40S
Chemistry
Solving Equilibrium Problems

Introduction

- The equilibrium law allows us to calculate the equilibrium concentrations of all species in a system.
- We can also determine if a system is at equilibrium and, if not, predict which direction it will go to achieve equilibrium.

Outcomes

- Solve equilibrium problems given initial and one equilibrium concentrations.
- Find equilibrium concentrations given initial concentrations and Kc. Determine the reaction quotient for a system.
Determine if a system is at equilibrium or which reaction is favoured.

Lesson Overview

- Problem Types
- Reaction Quotient
- Predicting Equilibrium

Example

- One problem type is when the initial concentrations of some species, usually reactants are given and the equilibrium concentration of one of the products is given, calculate the equilibrium constant.

For the reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HF}(\mathrm{~g})
$$

1.00 moles of hydrogen and
1.00 moles of fluorine are sealed in a 1.00 L flask at $150^{\circ} \mathrm{C}$ and allowed to react.
At equilibrium, 1.32 moles of HF are present.
Calculate the equilibrium constant.

Solution

To solve this problem, it is best to set up a table recording: initial concentrations (I) change in concentrations (C) equilibrium concentrations (E) ICE for short . . .

Since the flask is 1.00 L ,
$\left[\mathrm{H}_{2}\right]=\left[\mathrm{F}_{2}\right]=1.00 \mathrm{~mol} / \mathrm{L}$ and the initial concentration of HF is zero.
Set up the table by first rewriting the equation...

	$\mathrm{H}_{2}+$	F_{2}	$\Leftrightarrow 2 \mathrm{HF}$
\mathbf{I}	1.00	1.00	0
\mathbf{C}	-0.66	-0.66	+1.32
\mathbf{E}			

According to stoichiometry, $1.32 \mathrm{~mol} / \mathrm{L} \mathrm{HF}\left(\frac{1 \mathrm{~mole} \mathrm{H}_{2}}{2 \text { moles HF}}\right)=0.66 \mathrm{rol} / \mathrm{L} \mathrm{H}_{2}$

Since the equilibrium [HF] is $1.32 \mathrm{~mol} / \mathrm{L}$, it increases by that amount. According to the stoichiometry, $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{F}_{2}\right]$ will decrease by one half that amount

$\mathrm{H}_{2}+$						
\mathbf{F}	F_{2}	$\Leftrightarrow \mathbf{2 H F}$				
\mathbf{I}	1.00	1.00	0			
\mathbf{C}	-0.66	-0.66	+1.32			
\mathbf{E}	0.34	0.34	1.32			Substitute the equilibrium
:---						
concentrations into the						
equilibrium law and solve for Kc:						
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{HF}^{2}\right.}{\left[\mathrm{H}_{2}\right]\left[\mathrm{F}_{2}\right]}=\frac{(1.32)^{2}}{(0.34)(0.34)}=\frac{1.742}{0.1156}$						
$\mathrm{~K}_{\mathrm{c}}=15.1$						

Example

- When given initial concentrations and the equilibrium constant, we can calculate the equilibrium concentrations of all reactants and products for many equilibrium systems.

For the reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{~g})
$$

The Kc is 6.76 . If 6.0 moles of nitrogen and oxygen gases are placed in a 1.0 L container, what are the concentrations of all reactants and products at equilibrium?

Solution

Here the equilibrium concentrations are not known.

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{NQ}(\mathrm{~g})
$$

We know from stoichiometry, as the reaction proceeds equal amounts of nitrogen and oxygen will be consumed and twice that amount of NO will be produced.

Since we do not know the amounts consumed, we will assign them a value of x and the amount of NO produced 2x.

Then, set up the "ICE" table . . .
Insert initial

| $c \mid$ | $\mathrm{N}_{2}+$ | O_{2} | $\Leftrightarrow 2 \mathrm{NO}$ |
| :---: | :---: | :---: | :---: | :---: |
| | | concentrations | |
| \mathbf{I} | 6.0 | 6.0 | 0 |
| \mathbf{C} | | | |
| \mathbf{E} | | | |

Since we do not know the equilibrium concentrations of any of the species we insert x for the amount of N_{2} and O_{2} consumed and $2 x$ for the amount of NO produced.

	$\mathrm{N}_{2}+$	O_{2}	$\Leftrightarrow \mathbf{2 N O}$
\mathbf{I}	6.0	6.0	0
\mathbf{C}	-x	-x	2 x
\mathbf{E}	$6.0-\mathrm{x}$	$6.0-\mathrm{x}$	2 x

We then write out the equilibrium law and substitute these values for the concentrations:
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NO}^{2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]}$
substitute known values
$6.76=\frac{(2 x)^{2}}{(6.0-x)(6.0-x)}$
$\sqrt{6.76}=\sqrt{\frac{2 x^{2}}{(6.0-x)^{2}}}$
The denominator is a square, so if we take the square root of both sides we can avoid a quadratic equation.
$2.60=\frac{2 x}{6.0-x}$
$(6.0-x)(2.60)=\left(\frac{2 x}{6.0-x}\right)(6.0-x)$
$15.6-2.60 x=2 x \quad$ Solve for x by eliminating
$15.6=2 x+2.60 x$ the denominator.
$\frac{15.6}{4.6}=\frac{4.6 x}{4.6}$
$3.4=x$
Solve for \mathbf{x}

Since x equals the loss in concentrations of nitrogen and oxygen,
$[\mathrm{N} 2]=[\mathrm{O} 2]=6.0-\mathrm{x}=6.0-3.4=2.6$ $\mathrm{mol} / \mathrm{L}$
$[\mathrm{NO}]=2 x=2(3.4 \mathrm{~mol} / \mathrm{L})=6.8 \mathrm{~mol} / \mathrm{L}$

Therefore, at equilibrium nitrogen and oxygen are both $2.6 \mathrm{~mol} / \mathrm{L}$ and the concentration of NO is $6.8 \mathrm{~mol} / \mathrm{L}$.

Homework Assignment

. Complete Equilibrium Assignment \#3

Practice

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HCl}(\mathrm{~g}) \text { at } 516^{\circ} \mathrm{C}
$$

A student places 2.00 mol H 2 and 2.00 mol Cl_{2} into a 0.500 L container and the reaction is allowed to go to equilibrium at $516^{\circ} \mathrm{C}$. If Keq is 76.0 , what are the equilibrium concentrations of $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl ?

Practice

Practice

If $\mathrm{K}=78.0$ for the reaction
$\mathrm{A}(\mathrm{s})+2 \mathrm{~B}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{C}(\mathrm{g})$
and initially there are 5.00 moles of A and 4.84 moles of B in a 2.00 L container, how many moles of B are left at equilibrium?

Practice

Practice

Reaction Quotient

- When reactants and products are added into a container it is good to know whether equilibrium has been reached.
- If equilibrium has not been reached it is helpful to know which reaction, forward or reverse, is favoured in order for equilibrium to be achieved.
- The reaction quotient , Q, is used to determine this information.
- The Q is determined by using the equilibrium law and using either initial [] or those determined during experimental trials.
- To determine which reaction is favoured and in which direction the system is moving, Q is compared to Kc.
- If $Q=K c$, the system is at equilibrium. Forward rate = reverse rate and [reactant] and [product] remain constant.
- If $Q>K$, the system is NOT at equilibrium.
- There is too much product, so the reverse reaction is favoured to bring the reactantproduct ratio to equal K by increasing reactant concentration.
- If $\mathrm{Q}<\mathrm{K}$, the system is NOT at equilibrium.
- [Reactant] is too large, so the forward reaction is favoured.
- This results in decreasing [reactant] and increasing [product], bringing their ratio to a value equal to K .

Predicting Equilibrium

For the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{~g})
$$

8.50 moles of $\mathrm{N}_{2}, 11.0$ moles of O_{2} and 2.20 moles of NO were in a 5.00 L container.
If the Kc is 0.035 , are the following concentrations at equilibrium? If not, which reaction is favoured and which concentrations are increasing and which are decreasing?

Solution

Determine the [] of all species:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{N}_{2}}=\frac{\mathrm{n}}{\mathrm{~V}}=\frac{8.50 \mathrm{moles}}{5.00 \mathrm{~L}}=1.70 \mathrm{~mol} / \mathrm{L} \\
& \mathrm{C}_{\mathrm{O}_{2}}=\frac{\mathrm{n}}{\mathrm{~V}}=\frac{11.0 \mathrm{moles}}{5.00 \mathrm{~L}}=2.20 \mathrm{~mol} / \mathrm{L} \\
& \mathrm{C}_{\mathrm{NO}}=\frac{\mathrm{n}}{\mathrm{~V}}=\frac{2.20 \mathrm{moles}}{5.00 \mathrm{~L}}=0.440 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Substitute the concentrations into the equilibrium law, with K replaced by Q:
$\mathrm{Q}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}=\frac{(0.440)^{2}}{(1.70)(2.20)}=0.0518$
Q is greater than the value of K. This means...

- Since Q > K, the system is not at equilibrium. The reverse reaction is favoured and
- the [NO] is decreasing and the [oxygen] and [nitrogen] are increasing.

Lesson Summary

- How to solve problems given K and initial concentrations.
- How to use the reaction quotient to predict whether a system is at equilibrium and, if not, which reaction is favoured.

Homework Assignment

- Complete the Equilibrium \#3 worksheet

Introduction

- It is important to know the factors that will affect control the position of equilibrium.
- Chemists/chemical engineers must understand the conditions which will optimize the amount of product as well as being economical.

Outcomes

- Use Le Chatelieris Principle to explain the effects of each of the following on the position of a system at equilibrium:
* Changing concentration
* Changing pressure
* Changing temperature
* Adding a catalyst

Lesson Overview

- Le Chatelier's Principle
- Changing Concentration
- Iron-Thiocyanate Equilibrium
- Pressure Changes/Example
- Hydrogen Iodide Equilibrium
- Temperature Changes
- Nitrogen Dioxide Equilibrium
- Temperature and Kc
- Effect of a Catalyst

Le Chatelier's Principle

- Henri Louis Le Chatelier (1850-1936): a French chemist/mining engineer.
- In 1884 Le Chatelier proposed Le Chatelier's Principle. The principle states:
"When a system at equilibrium is subjected to a stress, the system will adjust so as to relieve the stress."

Changing Concentration

- In a system at equilibrium, a change in [products] or [reactants] present at equilibrium constitutes a stress.
- Adding more reactant, or removing product, upsets the established equilibrium.
- The stress is relieved by forming more product, or using up reactant.
- The forward reaction rate increases until equilibrium is reestablished.
- (The forward reaction is favoured until Kc is attained again.)
If reactant is added or product is removed, we say that the equilibrium "shifts to the right".
- Adding more product, or removing reactant, causes the system to shift the equilibrium left.
- The reverse reaction is favoured until the product to reactant ratio is equal to Kc once again.

Thiocyanoiron Ion Equilibrium

A standard laboratory example for demonstrating the effect of changing concentrations on equilibria:
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}-(\mathrm{aq}) \Leftrightarrow \mathrm{FeSCN}^{2+}(\mathrm{aq})$ red

The position of equilibrium can be determined from the colour of the solution.

VIDEO

Consider the experiment below,

 where a control mixture is prepared with a mixture of iron (III) and thiocyanate ions. To separate test tubes of control solution, different substances are added:

- If salts containing either Fe^{3+}, SCN^{-}or both, the colour of the solution becomes a deeper red.
- This suggests a shift in the equilibrium to the right.
- The concentration of the thiocyanoiron ion complex, FeSCN ${ }^{2+}$, increases, establishing a new equilibrium position.
- The system uses up some of the added reactant to counteract the change.
- When NaOH is added to the system the solution turns to a pale yellow.
- If NaOH is added to the system, the hydroxide ions combine with the iron (III) ions to produce an insoluble complex of iron (III) hydroxide.
- The colour change indicates a shift in the equilibrium to the left, reducing the FeSCN^{2+} ion concentration.
- Precipitating out the iron ions reduces the iron ion concentraion.
- The system responds to the change by replacing some of the "lost" iron by favouring the reverse reaction.

Pressure Changes

- The pressure of a system can be changed by increasing or reducing the volume of the reaction container.
- Increasing the size of the container reduces the pressure.
- Decreasing the size of the container increases the pressure of the system.
- Changing the pressure of a system only affects those equilibria with gaseous reactants and/or products.

- Decreasing the pressure on a system causes the system to shift to increase the pressure by increasing the number of particles in the container.
- That is, shift to the side with more molecules.

An Example of Pressure Changes

For the reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

a) What is the effect on the equilibrium if the size of the container is cut in half, but the number of particles and temperature remain unchanged?

Steps for Solving Le Chatelier's Principle Problems

- Identify the stress.
* Tell what the system does to reduce the stress.
- Indicate which concentrations increase and which ones decrease.
- Indicate whether the equilibrium shifts left, right, or has no change.

- This system can reduce molecules by favouring the forward reaction. There are four moles of reactants on the left ($1 \mathrm{~N}_{2}+3 \mathrm{H}_{2}=4$ molecules) and only two $\left(2 \mathrm{NH}_{3}\right)$ on the right.
- The rate of the forward reaction will increase, increasing the concentration of NH_{3} and reducing the concentration of N_{2} and H_{2}.
The equilibrium shifts right.

Solution

- Increasing volume, while keeping other factors constant, decreases pressure.
- According to Le Chatelier's Principle, the system will adjust to increase pressure. The system does this by increasing the number of molecules in the container.

- The equilibrium shifts left, favouring the reverse reaction and increasing the concentration of reactants while reducing the concentration of products.

Hydrogen lodide Equilibrium

For the following reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

pressure changes would have NO effect on the equilibrium position.
Each side of the reaction has two moles of molecules.
There is no way to either increase or reduce the number of particles.

Temperature Changes

- Increasing temperature always increases the rate of a reaction.
- Increasing temperature always increases the rate of an endothermic reaction more than the rate of an exothermic reaction.
- According to Le Chatelier's Principle, a change in temperature causes a stress on a system at equilibrium.
- The system attempts to relieve the stress by either replacing lost heat or consuming added heat.
- To solve equilibrium problems involving heat changes, consider heat to be a product (exothermic reactions) or a reactant (endothermic reactions).

Nitrogen Dioxide Equilibrium

The conversion of dinitrogen tetroxide to nitrogen dioxide is reversible and temperature dependent:
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
colourless brown
$\Delta \mathrm{H}=+58 \mathrm{~kJ}$
or
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+$ heat $\Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ VIDEO

- The forward reaction is endothermic.
- Heat is a reactant.
- Adding heat can be considered as increasing one of the reactants.
- Adding heat increases the rate of the forward reaction.
- The system attempts to remove added heat by using it up in the forward reaction.
- The reaction shifts to the right. The concentration of NO_{2} increases and the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ decreases.
- If a container holding an $\mathrm{N}_{2} \mathrm{O}_{4}-\mathrm{NO}_{2}$ mixture is cooled, the system replaces lost heat by favouring the reaction which heat is a product.
- The equilibrium shifts left.
- This increases the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ and reduces the concentration of NO_{2}.
- This is evident since NO_{2} is a brown coloured gas, while $\mathrm{N}_{2} \mathrm{O}_{4}$ is colourless.
- As the temperature is increased the gas becomes brown and as the reaction chamber is cooled, the gas turns colourless.

Temperature and Kc

- The equilibrium constant is temperature dependent.
- In the example on the previous page, increasing temperature caused a shift in the equilibrium to the right, favouring products.
- This would cause an increase in [product] and a reduction in [reactant].
- This would result in an increase in the value of Kc.
- A decrease in temperature causes a shift to the left, reducing [product] and increasing [reactant].
- This would result in a decrease in the value of Kc .

- Temperature is the only factor which will change the value of Kc.

Effect of a Catalyst

- Adding a catalyst to a system decreases the activation energy of a reaction.
- This will cause the rate of a reaction to increase.
- A catalyst lowers the activation energy of BOTH forward and reverse reactions equally.

Lesson Summary

- Changing conditions of a system at equilibrium is a stress on that system.
- Le Chatelier's Principle states that when a stress is placed on a system at equilibrium, the system will respond to reduce that stress.
- We can use le Chatelier's Principle to predict the how temperature, pressure and concentration changes affect the position of equilibrium.

Homework Assignment

- Complete the Le Chaterlier's Principle Questions worksheet.

