\qquad

$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} 0^{+}\right]\left[\mathrm{OH}^{-}\right] \quad \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{C}=\mathrm{n} / \mathrm{v} \quad \mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \quad \%$ dissociation $=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times 100 \%}{[\mathrm{HA}]}$
$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$
$\nu=c / \lambda$
$\%$ dissociation $=\underset{[\mathrm{BOH}]}{[\mathrm{OH}]} \times 100 \%$
percent error $=$ error $\times 100$ accepted value
$\mathrm{E}=\mathrm{h} \nu$
$[\mathrm{OH}-]=10^{-\mathrm{pOH}}$
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
$M=\frac{\mathrm{mRT}}{\mathrm{PV}}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
Molar volume: 22.4 mole/L
$\%$ yield $=\underset{\text { theoretical yield }}{\text { actual yield }} \times 100$
$\mathrm{PV}=\mathrm{nRT}$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$\mathrm{M}=\frac{\mathrm{Mol}}{\mathrm{L}} \quad \%$ dissociation $=\underset{[\mathrm{BOH}]}{[\mathrm{OH}-] \times 100 \%}$

Formula and Constant Reference Sheet

$$
{ }^{\circ} \mathrm{C}=\mathrm{K}-273 \quad \mathrm{~K}_{\mathrm{sp}}=\left[\mathrm{ion}^{+}\right]\left[\mathrm{ion}^{-}\right]
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \mathrm{Q}_{\mathrm{sp}}=\left[\mathrm{ion}^{+}\right]\left[\mathrm{ion}^{-}\right]
$$

$$
\mathrm{M}=\underline{\mathrm{moles}}
$$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

$$
\text { Rate }=\mathrm{k}[\mathrm{~A}]^{\mathrm{m}}[\mathrm{~B}]^{\mathrm{n}}
$$

$\underline{\mathrm{S}}_{1}=\underline{\mathrm{S}}_{2}$
Rate $=\underline{\Delta[\text { reactant }]}$
$\begin{array}{ll}\mathrm{P}_{1} & \mathrm{P}_{2}\end{array}$
Δt
$\underline{\mathrm{P}}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{1}}$
$\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{14}$

Percent by mass $=\underset{\text { mass of solution }}{\text { mass }} \times 100$
Percent by volume $=\underset{\text { volume of solution }}{\text { volume of }}$ x 100
Avagadro's number: 6.02×10^{23} representative particles/mole
$\mathrm{pH}+\mathrm{pOH}=14.00$

$$
760 \mathrm{mmHg}=1.0 \mathrm{~atm}=760 \mathrm{torr}=101.3 \mathrm{kPa}=14.74 \mathrm{psi}
$$

