

## Hydrated Compounds



Some compounds exist in a "hydrated" state. Hydration, you know, has to do with WATER!

Some specific number of water molecules are present for each molecule of the compound.


## Hydration Number

Some compounds attach themselves to water molecules. This is done in set numbers, depending on the compound. For example, magnesium sulfate attaches to 7 water molecules. We say its hydration number is 7 .

## $\mathrm{MgSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$

(Magnesium Sulfate Heptahydrate)

## Dessicants

- You've probably noticed that some consumer goods contain a small packet labeled "Silica gel: Do not eat". What's that packet for, anyway?

- As you know, many goods can be easily damaged by moisture. The silica gel in each packet is used to soak up water from the atmosphere. This minimizes moisture that causes damage during shipping.


Thisty Bag


## Hydrate vs. Anhydrate

- Many ionic compounds can be used to soak up water. Before they absorb water, they're referred to as "anhydrous", which means "without water". After absorbing water. thev are hvdrates.
- Cobalt chloride hexahydrate is an example.



## Used to gauge effectiveness of dessicants... or to make Weather Dolls :)

- After they've soaked up the maximum amount of water, they're called "hydrates", making that water molecules are stuck to them



## Other examples

- Epsom salts...magnesium sulfate 7
- Water softener...sodium carbonate 10
- Fireproofing...magnesium chloride 6
- Dyes...barium chloride 2
- Photo film...cadmium nitrate 4
- Embalmer...zinc chloride 6
- Fireworks, soldering...lithium chloride 4
- Dessicant \& weather predictor...cobalt (II) chloride 6
- Plaster of Paris...calcium sulfate 2



## How do you figure out the hydration number?

- If you heat hydrates to very high temperatures, they "dehydrate", meaning that the water is lost.
- Once all of the water is lost, these compounds are again referred to as "anhydrous".


The hydration number can be conveniently found by heating the compound and measuring its mass loss. This mass loss is usually due to the hydration water molecules being driven off.

For example...

A 15.35 g sample of Strontium nitrate,
$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2} \bullet \mathrm{nH}_{2} \mathrm{O}$, is heated to a constant mass of 11.45
g. Calculate the hydration number.

## Sample Data:

| Mass Hydrate | 15.35 g |
| :--- | ---: |
| Mass Anhydride | -11.45 g |
| Mass of Water (mass loss) | 3.90 g |

## Calculations

Moles Anhydride

$$
\frac{11.45 \mathrm{~g} \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}}{} \times \frac{1 \mathrm{~mol} \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}}{211.64 \mathrm{~g} \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}}=0.05410 \mathrm{~mol} \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}
$$

Moles Water

$$
\frac{3.90 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.216 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

Molar ratio...

$$
\frac{\mathrm{mol} \mathrm{H}_{2} \mathrm{O}}{\mathrm{~mol} \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}}=\frac{0.216 \mathrm{H}_{2} \mathrm{O}}{0.05410 \mathrm{~mol} \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}}=3.99 \approx 4
$$

Hydration Number is $4, \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}$

Simulated lab data
to demonstrate method and calculations

- In this sample lab, we will be dehydrating the hydrate of calcium nitrate.
- Using the data from this lab, you will determine the formula of the hydrate


## The setup



## EXAMPLE

- Find amount of water in calcium nitrate $n$ hydrate and the formula for the hydrate.
- A 7.0 g sample of hydrated calcium nitrate is heated in a ceramic dish to constant mass
- 4.9 grams remains after heating. This is the anhydrous salt.
- How much water was driven off from the hydrate?
- 7.0 g sample of hydrated calcium nitrate
- 4.9 g anhydrous salt
2.1 grams of water


Determine moles of anhydrate and water

Convert the mass of anhydrous salt to moles.
$4.9 \mathrm{gCa}(\mathrm{NO} 3) 2 \mid 1 \mathrm{~mole} \mathrm{Ca}(\mathrm{NO} 3) 2=.0299 \mathrm{~mol} \mathrm{Ca}(\mathrm{NO} 3) 2$
| $164.10 \mathrm{~g} \mathrm{Ca}(\mathrm{NO})^{2}$

Convert the mass of water to moles.
$2.1 \mathrm{gH} \mathrm{H}_{2} 1$ mole H2O $=.117 \mathrm{~mol} \mathrm{H} 2 \mathrm{O}$ | 18.02 g H 2 O

## Determine the ratio of water to anhydrate

- Determine the ratio of moles of water to moles of anhydrate: (or divide both values by the smallest to get whole number ratio)

$$
\frac{\text { MOLES WATER }}{\text { MOLES ANHYDRATE }}=\frac{.117 \mathrm{~mol} \mathrm{H2O}}{.0299 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}
$$

= $3.91 \sim 4$ moles of water for every mole of calcium nitrate

## Write the formula

- Write the formula:
(formula of the anhydrate $\bullet$ hydration $\# \mathrm{H}_{2} \mathrm{O}$ )

$$
\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}
$$

- Name it:
(name of anhydrate \#prefix-hydrate)
Calcium nitrate tetrahydrate

