

Calculating Av	verage	Rate:	
Example 1:	<u>Time(s)</u>	[B] (mol/L)	
According to the	0.0	0.0	
reaction A B, the	20.0	0.50	
following data	30.0	0.60	
was collected:	40.0 50.0	0.65 0.67	
a) What is the averag seconds?	e rate ov	er the entire	e 50
b) What is the average 20s to 40 s?	e rate fo	r the interva	I

Time (s)	[NO ₂] (mol/L)	[NO] (mol/L)	[O ₂] (mol/L)
0	0.100	0	0
100	0.066	0.034	0.017
200	0.048	0.052	0.026
300	0.038	0.062	0.031
400	0.030	0.070	0.035

Rate =
$$-\frac{1}{2}\frac{\Delta[NO_2]}{\Delta t} = \frac{1}{2}\frac{\Delta[NO]}{\Delta t} = \frac{\Delta[O_2]}{\Delta t}$$

Step 1 Step 2	$NO_2 + NO_2 \rightarrow NO_3 + NO$ (slow) $NO_3 + CO \rightarrow NO_2 + CO_2$ (fast)						
Predict the shape of the curve:							
The larger1 is the RE	the E_A , the slower the reaction. Step S, so it should have the largest E_A .						
Step 2 is farmed activation where Step	Step 2 is fast. It should have the lowest activation energy. The E _A for Step 2 begins where Step 1 ends.						
The $\mathbf{H}_{\text{reactants}}$ should be higher than the $\mathbf{H}_{\text{products}}$.							

Complete Kinetics Assignment #4.

Example 1:								
♦ What is the rate law for the following reaction, given the experimental data below? $H_2O_2 + 2 HI \rightarrow 2 H_2O + I_2$								
	Trial Number	[H ₂ O ₂] (mol/L)	[HI] (mol/L)	Rate (mol/Ls)				
	1	0.10	0.10	0.0076				
	2	0.10	0.20	0.0152				
	3	0.20	0.10	0.0152				

Calculating Rate Constant

Example 2: For the reaction 3 $A(g) + B(g) + 2 C(g) \rightarrow 2 D(g) + 3 E(g)$ The following data was obtained:

Trial	[A] (mol/L)	[B] (mol/L)	[C] (mol/L)	Rate (mol/Ls)
1	0.10	0.10	0.10	0.20
2	0.20	0.10	0.10	0.40
3	0.20	0.20	0.10	1.60
4	0.20	0.10	0.20	0.40
5	0.50	0.40	0.25	?
6	?	0.60	0.50	6.00

Homework Assignment

Complete *Kinetics Assignment #5*.
Complete *Kinetics Assignment #6*.
Complete *Kinetics Assignment #7*.