

Use Le Châtelier's Principle to explain the effect of the given changes upon the equilibrium systems shown.

Use the scheme:

- 1. Tell what the stress is
- 2. Tell what the system tries to do to reduce the stress
- 3. Tell what concentrations increase, decrease.

4. Tell whether the equilibrium shifts left, right or no change.

1. Effect of adding more hydrogen (H₂) to the system:

 $2NO_2(g) + 7H_2(g) \leftarrow 2NH_3(g) + 4H_2O(g)$

- An increase in the [] of the reactant H₂
- The system produces more product to use up the additional reactant. The forward reaction is favoured.
- [NO₂] and [H₂] decrease and the [NH₃] and [H₂0] increase
- Equilibrium shifts to the right
- 2. Effect of raising the temperature (adding more heat) to the system:

 $N_2O_4(g) + 58.5 \text{ KJ} \leftarrow \rightarrow 2NO_2$

- An increase in temperature when heat is a reactant (endothermic reaction)
- The system adjusts to reduce the amount of heat by producing more product. The forward reaction is favoured.
- [N₂O₄] decrease and the [NO₂] increases
- Equilibrium shifts to the right

3. Effect of removing some I_2 (g) (i.e. decreasing I_2 concentration).

 $H_2(g) + I_2(g)$ \leftarrow \rightarrow 2HI (g) + 12.5 KJ

- A decrease in the [] of the reactant, I₂
- The system produces more reactant to replace the missing I₂. The reverse reaction is favoured.
- [HI] decreases and the [H₂] and [I₂] increases
- Equilibrium shifts to the left
- 4. Effect of increasing the pressure on the system by decreasing the volume of the container:

 $2NO(g) + O_2(g) \leftarrow \rightarrow 2NO_2(g)$

- Decrease in volume when the number of reactant particles > number of product particles
- The system reduces the pressure by favouring the forward reaction to reduce the number of particles.
- [NO] and [O₂] decrease and the [NO₂] increases
- Equilibrium shifts to the right
- 5. Effect of adding more ammonia, NH₃, to the system:

 $2NO_2(g) + 7H_2 \leftarrow \rightarrow 2NH_3(g) + 4H_2O(g)$

- Increase in the [] of the product, NH₃
- The system reduces the amount of NH₃ by favouring the reverse reaction and producing more reactant.
- [NH₃] and [H₂O] decrease and the [NO₂] and [H₂] increase
- Equilibrium shifts to the left
- 6. Effect of reducing the temperature (removing heat) on this system:

 $2C(s) + O_2(g) \leftarrow \rightarrow 2CO + 222 \text{ KJ}$

- Decrease in temperature when heat is a product (exothermic reaction)
- The system increases the amount of heat by favouring the forward reaction.
- [C] and [O₂] decrease and the [CO] increases
- Equilibrium shifts to the right

7. Effect of removal of some Nitrogen Dioxide, NO₂, from the system:

 $2NO_2(g) + 7H_2(g) \leftarrow 2NH_3(g) + 4H_2O(g)$

- Decrease in the [] of the reactant, NO₂
- The system replaces the missing NO₂ by favouring the reverse reaction.
- [NH₃] and [H₂O] decrease and the [NO₂] and [H₂] increase
- Equilibrium shifts to the left
- 8. Effect of decreasing the volume on the system:

 $N_2(g) + O_2(g) \leftarrow \rightarrow 2NO(g)$

- An increase in pressure when the number of particles of reactant = the number of particles of product.
- There is no shift in equilibrium.
- 9. What is the effect of reducing the concentration of Zn^{+2} on the following reaction:

 $Zn(s) + Cu^{+2}(aq) \leftarrow \rightarrow Cu(s) + Zn^{+2}(aq)$

- Decrease in the [] of the product, Zn⁺²
- The system produces more product to replace the missing Zn⁺². The products are favoured.
- [Zn] and [Cu⁺²] decrease and the [Cu] and [Zn⁺²] increase
- Equilibrium shifts to the right.

10. Explain the effect of compressing this system to a smaller volume:

 $N_2O_4(g) \leftarrow \rightarrow 2NO_2(g)$

- Increase in the pressure of the system when the number of particles of product > than the number of particles of reactant.
- The system decreases the pressure by producing fewer particles. The reverse reaction is favoured.
- [N₂O₄] increases and the [NO₂] decreases.
- Equilibrium shifts to the left.