\qquad

Chemical Equilibrium

 Le Châtelier's Principle QuestionsUse Le Châtelier's Principle to explain the effect of the given changes upon the equilibrium systems shown.

Use the scheme: $\quad 1$. Tell what the stress is
2. Tell what the system tries to do to reduce the stress
3. Tell what concentrations increase, decrease.
4. Tell whether the equilibrium shifts left, right or no change.

1. Effect of adding more hydrogen $\left(\mathrm{H}_{2}\right)$ to the system:

$$
2 \mathrm{NO}_{2}(\mathrm{~g})+7 \mathrm{H}_{2}(\mathrm{~g}) \quad \leftarrow \quad \rightarrow \quad 2 \mathrm{NH}_{3}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- An increase in the [] of the reactant H_{2}
- The system produces more product to use up the additional reactant. The forward reaction is favoured.
- $\left[\mathrm{NO}_{2}\right]$ and $\left[\mathrm{H}_{2}\right]$ decrease and the $\left[\mathrm{NH}_{3}\right]$ and $\left[\mathrm{H}_{2} 0\right]$ increase
- Equilibrium shifts to the right

2. Effect of raising the temperature (adding more heat) to the system:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+58.5 \mathrm{KJ} \quad \leftarrow \quad \rightarrow \quad 2 \mathrm{NO}_{2}
$$

- An increase in temperature when heat is a reactant (endothermic reaction)
- The system adjusts to reduce the amount of heat by producing more product. The forward reaction is favoured.
- $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ decrease and the [NO_{2}] increases
- Equilibrium shifts to the right

3. Effect of removing some $\mathrm{I}_{2}(\mathrm{~g})$ (i.e. decreasing I_{2} concentration).

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \quad \leftarrow \quad \rightarrow \quad 2 \mathrm{HI}(\mathrm{~g})+12.5 \mathrm{KJ}
$$

- A decrease in the [] of the reactant, I_{2}
- The system produces more reactant to replace the missing I2. The reverse reaction is favoured.
- [HI] decreases and the $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{I}_{2}\right]$ increases
- Equilibrium shifts to the left

4. Effect of increasing the pressure on the system by decreasing the volume of the container:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \leftarrow \quad \rightarrow \quad 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

- Decrease in volume when the number of reactant particles $>$ number of product particles
- The system reduces the pressure by favouring the forward reaction to reduce the number of particles.
- [NO] and $\left[\mathrm{O}_{2}\right]$ decrease and the [NO_{2}] increases
- Equilibrium shifts to the right

5. Effect of adding more ammonia, NH_{3}, to the system:

$$
2 \mathrm{NO}_{2}(\mathrm{~g})+7 \mathrm{H}_{2} \quad \leftarrow \quad \rightarrow \quad 2 \mathrm{NH}_{3}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- Increase in the [] of the product, NH_{3}
- The system reduces the amount of NH_{3} by favouring the reverse reaction and producing more reactant.
- $\left[\mathrm{NH}_{3}\right]$ and $\left[\mathrm{H}_{2} \mathrm{O}\right]$ decrease and the $\left[\mathrm{NO}_{2}\right]$ and $\left[\mathrm{H}_{2}\right]$ increase
- Equilibrium shifts to the left

6. Effect of reducing the temperature (removing heat) on this system:

$$
2 \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \quad \leftarrow \quad \rightarrow \quad 2 \mathrm{CO}+222 \mathrm{KJ}
$$

- Decrease in temperature when heat is a product (exothermic reaction)
- The system increases the amount of heat by favouring the forward reaction.
- [C] and $\left[\mathrm{O}_{2}\right]$ decrease and the [CO] increases
- Equilibrium shifts to the right

7. Effect of removal of some Nitrogen Dioxide, NO_{2}, from the system:

$$
2 \mathrm{NO}_{2}(\mathrm{~g})+7 \mathrm{H}_{2}(\mathrm{~g}) \quad \leftarrow \quad \rightarrow \quad 2 \mathrm{NH}_{3}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- Decrease in the [] of the reactant, NO_{2}
- The system replaces the missing NO_{2} by favouring the reverse reaction.
- $\left[\mathrm{NH}_{3}\right]$ and $\left[\mathrm{H}_{2} \mathrm{O}\right]$ decrease and the $\left[\mathrm{NO}_{2}\right]$ and $\left[\mathrm{H}_{2}\right]$ increase
- Equilibrium shifts to the left

8. Effect of decreasing the volume on the system:

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \leftarrow \quad \rightarrow \quad 2 \mathrm{NO}(\mathrm{~g})
$$

- An increase in pressure when the number of particles of reactant $=$ the number of particles of product.
- There is no shift in equilibrium.

9. What is the effect of reducing the concentration of Zn^{+2} on the following reaction:

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{+2}(\mathrm{aq}) \quad \leftarrow \quad \rightarrow \quad \mathrm{Cu}(\mathrm{~s})+\mathrm{Zn}^{+2}(\mathrm{aq})
$$

- Decrease in the [] of the product, $\mathbf{Z n}^{\mathbf{+ 2}}$
- The system produces more product to replace the missing $\mathbf{Z n}^{+2}$. The products are favoured.
- $[\mathbf{Z n}]$ and $\left[\mathrm{Cu}^{+2}\right]$ decrease and the $[\mathrm{Cu}]$ and $\left[\mathrm{Zn}^{+2}\right]$ increase
- Equilibrium shifts to the right.

10. Explain the effect of compressing this system to a smaller volume:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \leftarrow \quad \rightarrow \quad 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

- Increase in the pressure of the system when the number of particles of product > than the number of particles of reactant.
- The system decreases the pressure by producing fewer particles. The reverse reaction is favoured.
- $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ increases and the $\left[\mathrm{NO}_{2}\right]$ decreases.
- Equilibrium shifts to the left.

