Science Notebook 405 # Chemistry Solutions and Solubility Equilibrium | | • | | | |--|---|--|--| | | | | | | | | | | | | | | | | Student Name: | Date: | | |---------------|-------|--| | | | | Answer the following questions in the spaces provided. - 1. Write the equation for the dissolving of calcium sulfate, CaSO₄. Write the solubility product expression. $K_{Sp} = 2.4 \times 10^{-5}$. - Write the equation for the dissociation of silver chromate, Ag₂CrO₄. Write the solubility product expression. Silver chromate dissolves to give Ag⁺ and CrO₄²⁻ ions. - 3. Compare the K_{sp} values for AgCI ($K_{sp} = 1.7 \times 10^{-10}$), AgBr ($K_{sp} = 5.0 \times 10^{-13}$), and AgI ($K_{sp} = 8.5 \times 10^{-17}$). Which of these compounds is most soluble in water? Which are least soluble? - 4. The solubility product constant of silver iodide, AgI is 8.5x10⁻¹⁷. What is the [Ag⁺] in a solution at equilibrium? Calculate the concentration of the ion indicated in a saturated solution of each of the following salts. Show all work. 5. $[Ba^{2+}(aq)]$ in a saturated solution of BaSO_{4(aq)}. $K_{sp} = 1.0 \times 10^{-10}$ 6. $[Cl^{-}(aq)]$ in a saturated solution of AgCl_(aq). $K_{sp} = 1.7x10^{-10}$. 7. $[I^{-}(aq)]$ in a saturated solution of PbI₂(aq). $K_{sp} = 8.7x10^{-9}$. 8. $[Al^{3+}(aq)]$ in a saturated solution of $Al(OH)_{3(aq)}$. $K_{sp} = 3.7 \times 10^{-15}$. | Student Name: _ | · · · · · · · · · · · · · · · · · · · | Date: | | |-----------------|---------------------------------------|-------|--| |-----------------|---------------------------------------|-------|--| Answer the following questions in the spaces provided. Show all necessary work. 1. If [D+] is 2.00x10⁻⁵ mol/L at equilibrium, what is the K_{sp} for D_2A ? 2. What is the concentration of Be²⁺ in a saturated solution of Be(OH)₂? $K_{sp} = 1.60 \times 10^{-22}$. 3. A saturated solution of PbI₂ has a lead ion concentration of 1.21x10⁻³. What is K_{sp} for PbI₂? 4. The solubility product of MnS is 1.40×10^{-15} . What concentration of sulfide ion is needed in a 0.100 mol/L solution of Mn(NO₃)₂ to just precipitate MnS? | Date: | |-------| | | For each of the following Ksp questions, find: - a) The dissociation equation. - b) The Ksp expression. - c) The molar solubility of the substance. - d) The concentration of each ion in the solution. 1. AgCl Ksp = $$1.77 \times 10^{-10}$$ 2. AIPO₄ Ksp = $$9.83 \times 10^{-21}$$ 3. BaSO₄ Ksp = $$1.07 \times 10^{-10}$$ 10. $$Cu_3(PO_4)_2$$ Ksp = 1.93 x 10⁻³⁷ | Student Name: | Date: | | |---------------|-------|--| | | | | Answer the following questions in you Chemistry notebook. Show all of you work when answering problems. - 1. Silver iodide, AgI, has a solubility product of 8.5×10^{-17} . What is the solubility, in moles per Litre, of AgI in - a) pure water - b) b) 0.010 mol/L HI - c) 0.010 mol/L MgI₂ - d) d) 0.010 mol/L AgNO₃ - 2. Magnesium fluoride, MgF₂, has a solubility product of 8.0×10^{-8} . Calculate the solubility, in mol/L, of magnesium fluoride in - a) pure water - b) b) 0.50 mol/L NaF - c) 0.50 mol/L MgCl₂ - 3. Gold (III) chloride, AuCl₃, has a Ksp of 3.2 x 10⁻²⁵. Calculate its solubility, in mol/L, in - a) pure water - b) b) 0.20 mol/L HCl - c) 0.20 mol/L MgCl₂ - d) d) 0.20 mol/L Au(NO₃) 3 | Student Name: | Date: | | |---------------|-------|--| | | | | Answer the following questions in you Chemistry notebook. Show all of you work when answering problems. - 1. Write the dissociation equation and the solubility product expression for each of the following: - a) PbSO₄ - b) $Al_2(SO_3)_3$ - c) Fe₂ (SO₄)₃ - 2. Given the compounds' K_{sp} , calculate their solubilities in mol/L and g/L. - a) CuS Ksp = 6.31×10^{-33} - b) $Pbl_2 Ksp = 1.39 \times 10^{-8}$ - 3. From the following solubilities, calculate the K_{sp}: - a) CaF₂ - 1.70 x 10-5 g/mL - b) BaCO₃ - 0.0138 g/L - 4. If 6.7×10^{-5} g of AgBr is all that can be dissolved at 25°C in 500.0 mL, calculate the solubility product of AgBr. - 5. At 25°C, a saturated solution of iron (III) hydroxide has an iron concentration of 1.3 x 10^{-13} mol/L. Calculate the K_{sp} of iron (III) hydroxide.