Science Notebook

405

Chemistry Solutions and Solubility Equilibrium

	•		

Student Name:	Date:	

Answer the following questions in the spaces provided.

- 1. Write the equation for the dissolving of calcium sulfate, CaSO₄. Write the solubility product expression. $K_{Sp} = 2.4 \times 10^{-5}$.
- Write the equation for the dissociation of silver chromate, Ag₂CrO₄. Write the solubility product expression. Silver chromate dissolves to give Ag⁺ and CrO₄²⁻ ions.

- 3. Compare the K_{sp} values for AgCI ($K_{sp} = 1.7 \times 10^{-10}$), AgBr ($K_{sp} = 5.0 \times 10^{-13}$), and AgI ($K_{sp} = 8.5 \times 10^{-17}$). Which of these compounds is most soluble in water? Which are least soluble?
- 4. The solubility product constant of silver iodide, AgI is 8.5x10⁻¹⁷. What is the [Ag⁺] in a solution at equilibrium?

Calculate the concentration of the ion indicated in a saturated solution of each of the following salts. Show all work.

5. $[Ba^{2+}(aq)]$ in a saturated solution of BaSO_{4(aq)}. $K_{sp} = 1.0 \times 10^{-10}$

6. $[Cl^{-}(aq)]$ in a saturated solution of AgCl_(aq). $K_{sp} = 1.7x10^{-10}$.

7. $[I^{-}(aq)]$ in a saturated solution of PbI₂(aq). $K_{sp} = 8.7x10^{-9}$.

8. $[Al^{3+}(aq)]$ in a saturated solution of $Al(OH)_{3(aq)}$. $K_{sp} = 3.7 \times 10^{-15}$.

Student Name: _	· · · · · · · · · · · · · · · · · · ·	Date:	
-----------------	---------------------------------------	-------	--

Answer the following questions in the spaces provided. Show all necessary work.

1. If [D+] is 2.00x10⁻⁵ mol/L at equilibrium, what is the K_{sp} for D_2A ?

2. What is the concentration of Be²⁺ in a saturated solution of Be(OH)₂? $K_{sp} = 1.60 \times 10^{-22}$.

3. A saturated solution of PbI₂ has a lead ion concentration of 1.21x10⁻³. What is K_{sp} for PbI₂?

4. The solubility product of MnS is 1.40×10^{-15} . What concentration of sulfide ion is needed in a 0.100 mol/L solution of Mn(NO₃)₂ to just precipitate MnS?

Date:

For each of the following Ksp questions, find:

- a) The dissociation equation.
- b) The Ksp expression.
- c) The molar solubility of the substance.
- d) The concentration of each ion in the solution.

1. AgCl Ksp =
$$1.77 \times 10^{-10}$$

2. AIPO₄ Ksp =
$$9.83 \times 10^{-21}$$

3. BaSO₄ Ksp =
$$1.07 \times 10^{-10}$$

10.
$$Cu_3(PO_4)_2$$
 Ksp = 1.93 x 10⁻³⁷

Student Name:	Date:	

Answer the following questions in you Chemistry notebook. Show all of you work when answering problems.

- 1. Silver iodide, AgI, has a solubility product of 8.5×10^{-17} . What is the solubility, in moles per Litre, of AgI in
 - a) pure water
 - b) b) 0.010 mol/L HI
 - c) 0.010 mol/L MgI₂
 - d) d) 0.010 mol/L AgNO₃
- 2. Magnesium fluoride, MgF₂, has a solubility product of 8.0×10^{-8} . Calculate the solubility, in mol/L, of magnesium fluoride in
 - a) pure water
 - b) b) 0.50 mol/L NaF
 - c) 0.50 mol/L MgCl₂
- 3. Gold (III) chloride, AuCl₃, has a Ksp of 3.2 x 10⁻²⁵. Calculate its solubility, in mol/L, in
 - a) pure water
 - b) b) 0.20 mol/L HCl
 - c) 0.20 mol/L MgCl₂
 - d) d) 0.20 mol/L Au(NO₃) 3

Student Name:	Date:	

Answer the following questions in you Chemistry notebook. Show all of you work when answering problems.

- 1. Write the dissociation equation and the solubility product expression for each of the following:
 - a) PbSO₄
 - b) $Al_2(SO_3)_3$
 - c) Fe₂ (SO₄)₃
- 2. Given the compounds' K_{sp} , calculate their solubilities in mol/L and g/L.
 - a) CuS Ksp = 6.31×10^{-33}
 - b) $Pbl_2 Ksp = 1.39 \times 10^{-8}$
- 3. From the following solubilities, calculate the K_{sp}:
 - a) CaF₂
- 1.70 x 10-5 g/mL
- b) BaCO₃
- 0.0138 g/L
- 4. If 6.7×10^{-5} g of AgBr is all that can be dissolved at 25°C in 500.0 mL, calculate the solubility product of AgBr.
- 5. At 25°C, a saturated solution of iron (III) hydroxide has an iron concentration of 1.3 x 10^{-13} mol/L. Calculate the K_{sp} of iron (III) hydroxide.