

Chapter Menu
Chapter Outhe
Resources (Help

Stoichiometry

Section 11.1 Defining
Stoichiometry
Section 11.2 Stoichiometric
Calculations
Section 11.3 Limiting Reactants
Section 11.4 Percent Yield

Section 11.1 Defining Stoichiometry

Objectives

- Describe the types of relationships indicated by a balanced chemical equation.
- State the mole ratios from a balanced chemical equation.

Review Vocabulary reactant: the starting substance in a chemical reaction

New Vocabulary
stoichiometry
mole ratio

MAIN《Idea The amount of each reactant present at the start of a chemical reaction determines how much product can form.

Chapter Menu
Chapter Outline
Resources
Help

Particle and Mole Relationships

- Chemical reactions stop when one of the reactants is used up.
- Stoichiometry is the study of quantitative relationships between the amounts of reactants used and amounts of products formed by a chemical reaction.

Particle and Mole Relationships (cont.)

- Stoichiometry is based on the law of conservation of mass.
- The mass of reactants equals the mass of the products.

We can interpret any balanced chemical equation in four (4) different ways. By

- Particles
- Moles
- Mass
- Volume at STP (for gases)

$$
\mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Particles

- The coefficients tell how many representative particles of each species (substance) are in the balanced equation.
- 1 molecule of CO_{2}
- 3 molecules of H_{2}
- 1 molecule of $\mathrm{CH}_{3} \mathrm{OH}$
- 1molecule of $\mathrm{H}_{2} \mathrm{O}$
Chapter Menu Chapter Outline Resources (Help

Particle and Mole Relationships (cont.)

$$
\mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Moles

- Coefficients tell how many moles of each species (substance) are involved in the reaction.
- 1 mole of CO_{2}
- 3 moles of H_{2}
- 1 mole of $\mathrm{CH}_{3} \mathrm{OH}$
- 1 mole of $\mathrm{H}_{2} \mathrm{O}$

Particle and Mole Relationships (cont.)

$$
\mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Mass

- Mass of reactants = mass of products
- Law of conservation of mass

$$
50.7 \mathrm{~g}=50.7 \mathrm{~g}
$$

Chapter Menu

Particle and Mole Relationships (cont.)

- A mole ratio is a ratio between the numbers of moles of any two substances in a balanced equation.
- The number of mole ratios that can be written for any equation is $(n)(n-1)$ where n is the number of species in the chemical reaction.

Using Stoichiometry

- All stoichiometric calculations begins with a balanced chemical equation.

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

Using Stoichiometry (cont.)

Steps to solve mole-to-mole, mole-to-mass, and mass-to-mass stoichiometric problems

1. Complete Step 1 by writing the balanced chemical equation for the reaction.
2. To determine where to start your calculations, note the unit of the given substance.
3. The end point of the calculation depends on the desired unit of the unknown substance.
Follow the "Mole Map" to solve stoichiometry problems...

Chapter Menu

Examples:

How many moles of ammonia are produced by 2.8 mol of hydrogen?

Chapter Menu

Examples:

What mass of ammonia, NH_{3}, can be produced from 5.00 moles of H_{2} according to the equation:

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

Chapter Menu

Examples:

Ammonia is produced in a reaction between nitrogen gas and hydrogen gas. How many litres of H_{2} gas are needed to react with 4.2×10^{23} molecules of N_{2} at STP?

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

Click the mouse button to return to the Chapter Menu.

Chapter Menu Chapter Outline Resources (Help

Section 11.3 Limiting Reactants

Objectives

- Identify the limiting reactant in a chemical equation.
- Identify the excess reactant, and calculate the amount remaining after the reaction is complete.
- Calculate the mass of a product when the amounts of more than one reactant are given.

Review Vocabulary

molar mass: the mass in grams of one mole of any pure substance

Chapter Menuthe reactants is used up.

Why did hotdog production stop?

Why do reactions stop?

- Reactions proceed until one of the reactants is used up and one is left in excess.
- The limiting reactant limits the extent of the reaction and, thereby, determines the amount of product formed.
- The excess reactants are all the leftover unused reactants.

Calculating the Product when a Reactant

is Limiting

- $\mathrm{S}_{8}(\mathrm{I})+4 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{~S}_{2} \mathrm{Cl}_{4}(\mathrm{I})$
- 200.0 g S and $100.0 \mathrm{~g} \mathrm{Cl}_{2}$
- Which is the limiting reactant

Chapter Ment
Chapter

Calculating the Product when a Reactant

 is Limiting (cont.)- Determine the amount of product formed

Calculating the Product when a Reactant is Limiting (cont.)

How much excess reactant is left over?

Chapter Menu
 Chapter Outline

Calculating the Product when a Reactant

 is Limiting (cont.)- Using an excess reactant can speed up the reaction.
- Using an excess reactant can drive a reaction to completion.

```
Chapter Menu Chapter Outline Resources (Help
```


Section 11.3 Assessment

The mass of the final product in a chemical reaction is based on what?
A. the amount of excess reactant
B. the amount of limiting reactant
C. the presence of a catalyst
D. the amount of O_{2} present

How much product?

- Laboratory reactions do not always produce the calculated amount of products.
- Reactants stick to containers.
- Competing reactions form other products.

Chapter Menu

How much product? (cont.)

- The theoretical yield is the maximum amount of product that can be produced from a given amount of reactant.
- The actual yield is the amount of product actually produced when the chemical reaction is carried out in an experiment.
- The percent yield of a product is the ratio of the actual yield expressed as a percent.

$$
\text { percent yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100
$$

- Calcium carbonate is decomposed by heating, as shown in the following equation

$$
\mathrm{CaCO}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2}(\mathrm{~g})
$$

- What is the theoretical yield of CaO if $24.8 \mathrm{~g} \mathrm{CaCO}_{3}$ is heated?
- What is the percent yield if 13.1 g CaO is produced?
- Percent yield can then be calculated using the equation, now that you know the theoretical and are given the actual yield or experimental yield
percent yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%$

Key Concepts

- Chemists use stoichiometric calculations to predict the amounts of reactants used and products formed in specific reactions.
- The first step in solving stoichiometric problems is writing the balanced chemical equation.
- Mole ratios derived from the balanced chemical equation are used in stoichiometric calculations.
- Stoichiometric problems make use of mole ratios to convert between mass and moles.

Study Guide Section 11.3 Limiting Reactants

Key Concepts

- The limiting reactant is the reactant that is completely consumed during a chemical reaction. Reactants that remain after the reaction stops are called excess reactants.
- To determine the limiting reactant, the actual mole ratio of the available reactants must be compared with the ratio of the reactants obtained from the coefficients in the balanced chemical equation.
- Stoichiometric calculations must be based on the limiting reactant.

Resources

Study Guide Section 11.4 Percent Yield

Key Concepts

- The theoretical yield of a chemical reaction is the maximum amount of product that can be produced from a given amount of reactant. Theoretical yield is calculated from the balanced chemical equation.
- The actual yield is the amount of product produced. Actual yield must be obtained through experimentation.
- Percent yield is the ratio of actual yield to theoretical yield expressed as a percent. High percent yield is important in reducing the cost of every product produced through chemical processes.

$$
\text { percent yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100
$$

Chapter Assessment

The mole ratios can be determined only if what?
A. all the reactants are present in equal amounts
B. the reactants do not have coefficients
C. the products do not have coefficients
(D.) the equation is balanced

Chapter Assessment
In the following reaction, how many moles
of NaCN are required to react with
5 mol of Au?
$4 \mathrm{Au}(\mathrm{s})+8 \mathrm{NaCN}(\mathrm{aq})+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow$
$4 \mathrm{NaAu}(\mathrm{CN})_{2}(\mathrm{aq})+4 \mathrm{NaOH}(\mathrm{aq})$
A. 3
B. 5
C. 8
(D.) 10

Standardized Test Practice

Resources

The SI base unit of amount is \qquad .
A. the gram
B. the kilogram
C. the mole
D. Avogadro's number

Standardized Test Practice

Resources
$\sqrt[8]{8 / C h e c k P o i n t}$
In a chemical reaction, the statement that matter is neither created nor destroyed is based on what?
A. mole ratio
B. law of conservation of mass
C. Avogadro's number
D. law of definite proportions

Standardized Test Practice

Resources
$8 /$ CheckPoint
The \qquad is the maximum amount of product that can be produced from a given amount of reactant.
(A. theoretical yield
B. actual yield
C. limiting reactant
D. excess reactant

