Chemistry Measuring

Measuring Matter: The Mole
Matter can be measured in a variety of ways. We will discuss the following methods:

1) Atomic Number
2) The Mole
3) Molar Mass

Atomic Number:

- The number used to arrange elements in order in the periodic table.
- It equals the number of protons in the nucleus of an atom of that element.
- There are no units included with atomic numbers.
- No two elements can have the same atomic number.

Practice:

Using your periodic table, find and record the atomic numbers of the following elements:
$\mathrm{Li}, \mathrm{Pb}, \mathrm{Cs}, \mathrm{Fe}, \mathrm{O}, \mathrm{Hg}, \mathrm{Cl}$

Atomic Number:

- The number used to arrange elements in order in the periodic table.
- It equals the number of protons in the nucleus of an atom of that element.
- There are no units included with atomic numbers.
- No two elements can have the same atomic number.

Practice:

Using your periodic table, find and record the atomic numbers of the following elements:
$\mathrm{Li}, \mathrm{Pb}, \mathrm{Cs}, \mathrm{Fe}, \mathrm{O}, \mathrm{Hg}, \mathrm{Cl}$

Atomic Mass:

- The weighted average of the masses of the isotopes of an element.
- The number is a measure of the number of protons and the average number of neutrons in the nucleus of an element.
- Is measured in amu (atomic mass units).

Practice:

Using your periodic table, find and record the atomic mass of the following elements:
$\mathrm{Mg}, \mathrm{Ni}, \mathrm{S}, \mathrm{Cu}, \mathrm{Al}, \mathrm{Hg}, \mathrm{Cl}$

- The molar mass of any 2 elements contain the same number of atoms.
Ex: Carbon and Oxygen
12.01 grams of C contains the same number of atoms as 16.00 grams of 0 .

Molar Mass:

- The molar mass is the mass of 1 mole of atoms of a monoatomic element.

Ex: Magnesium (Mg) MM = 24.3 g
$24.31 \mathrm{~g} \mathrm{Mg}=1 \mathrm{~mol} \mathrm{Mg}=24.31 \mathrm{~g} / \mathrm{mol}$ $=6.02 \times 10^{23}$ atoms Mg
$24.31 \mathrm{amu}=$ atomic mass

Practice:

- Find the molar mass for each of the following:
a) Na
b) As
c) U

Solution:
a) $22.99 \mathrm{~g} / \mathrm{mol} \mathrm{b)} 74.92 \mathrm{~g} / \mathrm{mol}$ c) $238.03 \mathrm{~g} / \mathrm{mol}$

The Molar Mass:

- The mass of one mole of a molecúlar compound expressed in grams.

Ex: $1 \mathrm{~mol} \mathrm{SO}_{3}=1 \mathrm{~S}+30$
$=32.06 \mathrm{~g} / \mathrm{mol}+3(16.00 \mathrm{~g} / \mathrm{mol})$
$=80.06 \mathrm{~g} / \mathrm{mol}$

- Two methods can be used to calculate the Molar Mass:

1) Use the atomic mass:
$\mathrm{H}_{2} \mathrm{O}_{2}=2(1.01 \mathrm{~g} / \mathrm{mol})+2(16.00 \mathrm{~g} / \mathrm{mol})=34.02 \mathrm{~g} / \mathrm{mol}$

2) Use conversion factors and atomic mass:
$2 \mathrm{~mol} \mathrm{H} \times 1.01 \mathrm{~g} \mathrm{H}=2.02 \mathrm{~g} \mathrm{H}$ 1 mol H
$2 \mathrm{~mol} \mathrm{O} \times 16.00 \mathrm{~g} \mathrm{O}=32.00 \mathrm{~g} \mathrm{O}$ 1 mol 0
$2.02 \mathrm{~g}+32.00 \mathrm{~g}=34.02-\mathrm{g} \mathrm{H} \mathrm{H}_{2}$

Practice:

- Calculate the molar mass for the following:

1) CCl_{4}
2) PCl_{3}
3) $\mathrm{C}_{8} \mathrm{H}_{18}$
4) $\mathrm{N}_{2} \mathrm{O}_{5}$

Key:

1) $\mathrm{CCl}_{4}=12.01 \mathrm{~g} / \mathrm{mol}+4(35.45 \mathrm{~g} / \mathrm{mol})=153.81 \mathrm{~g} / \mathrm{mol}$
2) $\mathrm{PCl}_{3}=30.97 \mathrm{~g} / \mathrm{mol}+3(35.45 \mathrm{~g} / \mathrm{mol})=137.32 \mathrm{~g} / \mathrm{mol}$
3) $\mathrm{C}_{8} \mathrm{H}_{18}=8(12.01 \mathrm{~g} / \mathrm{mol})+18(1.01 \mathrm{~g} / \mathrm{mol})=114.26 \mathrm{~g} / \mathrm{mol}$
4) $\mathrm{N}_{2} \mathrm{O}_{5}=2(14.01 \mathrm{~g} / \mathrm{mol})+5(16.00 \mathrm{~g} / \mathrm{mol})=108.02 \mathrm{~g} / \mathrm{mol}$

Molar Mass:

- The mass of one mole of an ionic compound expressed in grams.
- It is calculated using the same process as gram molecular mass. Example:
$\mathrm{SrCl}_{2}=87.62 \mathrm{~g} / \mathrm{mol}+2(35.45 \mathrm{~g} / \mathrm{mol})=158.52 \mathrm{~g} / \mathrm{mol}$

Practice:

- Calculate the molar mass for the following compounds:

1) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
2) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
3) $\mathrm{Ca}(\mathrm{CN})_{2}$

Key:

1) $\mathrm{Na}_{2} \mathrm{CO}_{3}=2(22.99 \mathrm{~g} / \mathrm{mol})+12.01 \mathrm{~g} / \mathrm{mol}+3(16.00 \mathrm{~g} / \mathrm{mol})=$ $105.99 \mathrm{~g} / \mathrm{mol}$
2) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=2(26.98 \mathrm{~g} / \mathrm{mol})+3(32.06 \mathrm{~g} / \mathrm{mol})+12(16.00 \mathrm{~g} / \mathrm{mol}$) $=342.14 \mathrm{~g} / \mathrm{mol}$
3) $\mathrm{Ca}(\mathrm{CN})_{2}=40.08 \mathrm{~g} / \mathrm{mol}+2(12.01 \mathrm{~g} / \mathrm{mol})+2(14.01 \mathrm{~g} / \mathrm{mol})=$ $92.12 \mathrm{~g} / \mathrm{mol}$

The Mole:

- The standard method in Chemistry for communicating "how much" of a substance is present.
- One mole contains 6.02×10^{23} entities (objects)

IUPAC Definition:

- The mole is the amount of a substance of a system which contains as many elementary entities as there are atoms in 0.012 kg of carbon-12. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, etc.

Avagadro's Number:

- The number of representative particles contained in one mole of a substance; equal to 6.02×10^{23} representative particles.
- Named in honour of Amedeo Avagadro di Quarenga (1776-1856), an Italian scientist. His work made the calculation of this number possible.

Molar Mass:

The mass of one mole of a substance.

- Contains 6.02×10^{23} entities
- Is equal to the mass, in grams; of one mole of an entity.
- Is recorded in the units grams per mole ($\mathrm{g} / \mathrm{mol}$)
- The molar mass of a substance is the gram molecular/formula mass expressed in g/mol.

Example:

$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=$

$$
\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{~g} / \mathrm{mol}+3(14.01 \mathrm{~g} / \mathrm{mol})+
$$

$$
9(16.00 \mathrm{~g} / \mathrm{mol})=213.01 \mathrm{~g} / \mathrm{mol}
$$

Assignment:

Complete the following worksheets: \checkmark Practice Calculating Molar Mass \checkmark Molar Mass: Practice Problems

Chemistry

Percent Composition:

- Allows us to determine the formula of compounds made in the laboratory.
- The percent by mass of each element in a compound.
- Includes as many percents as there are elements in a compound.
- Must total 100\%.

Example:
$\mathrm{K}_{2} \mathrm{CrO}_{4}$ is $\mathbf{4 0 . 3 \% \mathrm { K } , 2 6 . 8 \% \mathrm { Cr } \text { , and } 3 2 . 9 \% \mathrm { O } , ~}$

- The percent by mass of an element in a compound is the number of grams of the element divided by the grams of the compound, multiplied by 100%.
$\%$ mass = grams of element $\times 100$
grams of compound
- The mass of each element in the compound must be known to calculate percent composition.

Example:

- An 8.20 g piece of magnesium combines with 5.40 g of oxygen to form a compound. What is the percent composition of this compound?
$8.20 \mathrm{~g}+5.40 \mathrm{~g}=13.60 \mathrm{~g}$
$\% \mathrm{Mg}=\underset{\text { mass of compound }}{\text { mass } \mathrm{Mg}} \times 100 \%=\frac{8.20 \mathrm{~g}}{13.60 \mathrm{~g}} \times 100=60.3 \%$
$\% \mathrm{O}=\frac{\text { mass of } \mathrm{O}}{\text { mass of compound }} \times 100 \%=\frac{5.40 \mathrm{~g}}{13.60 \mathrm{~g}} \times 100=39.7 \%$ Check: $60.3 \%+39.7 \%=100 \%$
- To calculate the percent composition of a known compound, use the chemical formula to calculate the molar mass. This gives us the mass of 1 mole of the compound.
- For each element, calculate the percent by mass in one mole of the compound.
- To calculate the percent by mass, divide the mass of the element in one mole by the Molar Mass and multiply by 100%.
$\%$ mass $=\mathrm{g}$ of element in 1 mol of compound $\times 100$
Molar Mass of compound
OR
$\%$ mass $=$ Molar Mass of element $\times 100$ Molar Mass of compound

Example:

Calculate the percent composition of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$.
Solution:
$\mathrm{C}_{2} \mathrm{H}_{6}=2(12.01 \mathrm{~g} / \mathrm{mol})+6(1.01 \mathrm{~g} / \mathrm{mol})=30.08 \mathrm{~g} / \mathrm{mol}$
$\% C=$ grams of $C \times 100 \%=\underline{24.02 \mathrm{~g}} \times 100=79.82 \%$
MM of $\mathrm{C}_{2} \mathrm{H}_{6} \quad 30.08 \mathrm{~g}$
$\% \mathrm{H}=\underline{\text { grams of } \mathrm{H}} \times 100 \%=\underline{6(1.01 \mathrm{~g})} \times 100=20.2 \%$ $M M$ of $\mathrm{C}_{2} \mathrm{H}_{6} \quad 30.08 \mathrm{~g}$
Check: 79.8% + 20.2\% = 100%

- Percent composition can be used to calculate the number of grams of an element in a specific amount of a compound.
- The mass of the compound is multiplied by a conversion factor that is based on the percent composition

Example:

Calculate the amount of carbon in 82 g of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$.
\% composition of C in $\mathrm{C}_{2} \mathrm{H}_{6}=79.8 \%$
Assume 100 g of substance: $79.8 \%=79.8 \mathrm{~g}$
$82.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \times 79.8 \mathrm{~g} \mathrm{C}=65.436=65.4 \mathrm{~g} \mathrm{C}$ $100 . \mathrm{g} \mathrm{C}_{2} \mathrm{H}_{6}$

Practice:

1. Calculate the percent composition of the compounds that are formed from these reactions.
a) 29.0 g Ag combines completely with 4.30 g S .
b) 9.03 g Mg combines completely with 3.48 g N .
c) 222.6 g Na combines completely with 77.4 g O .

Key:

1. a) $87.1 \% \mathrm{Ag}, 12.9 \% \mathrm{~S}$
b) $\mathbf{7 2 . 2 \%} \mathrm{Mg}, \mathbf{2 7 . 8} \% \mathrm{~N}$
c) $\mathbf{7 4 . 2 \%} \mathrm{Na}, \mathbf{2 5 . 8} \% \mathrm{O}$

Practice:

2. Calculate the \% composition of each of these compounds.
a) Propane, $\mathrm{C}_{3} \mathrm{H}_{8}$
b) sodium bisulfate, NaHSO_{4}
c) calcium acetate, $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
d) hydrogen cyanide, HCN

Key:

2. a) $81.8 \% \mathrm{C}, 18.2 \% \mathrm{H}$,
b) $19.2 \% \mathrm{Na}, 0.83 \% \mathrm{H}, 26.7 \% \mathrm{~S}, 53.3 \% \mathrm{O}$
c) $\mathbf{2 5 . 4 \%} \mathrm{Ca}, 30.4 \% \mathrm{C}, 3.8 \% \mathrm{H}, 40.5 \% \mathrm{O}$
d) $3.7 \% \mathrm{H}, 44.4 \% \mathrm{C}, 51.9 \% \mathrm{~N}$

Practice:

3. Using the results from problem 2 on the previous slide, calculate the amount of hydrogen in the following amounts of these compounds.
a) $350 . \mathrm{g} \mathrm{C}_{3} \mathrm{H}_{8}$
b) $20.2 \mathrm{~g} \mathrm{NaHSO}_{4}$
c) $124 \mathrm{~g} \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
d) 378 g HCN

Key:

3. a) 63.7 g H
b) 0.17 g H
c) 4.71 g H
d) 14.0 g H

Empirical Formulas:

- The empirical formula gives the lowest whole-number ratio of the elements in a compound. It is the lowest whole number ratio of moles of atoms in a compound.
- The empirical formula of a compound can be calculated from the percent composition data. It may or may not be the same as the-molecular formula.

Examples:

- Carbon dioxide:

Empirical and molecular formula are CO_{2}.

- Dinitrogen tetrahydride:

Empirical formula NH_{2} Molecular formula $\mathrm{N}_{2} \mathrm{H}_{4}$

Example:

- A formula can be interpreted on a microscopic level (atoms) or on a macroscopic level (moles of atoms).
Example:
- What is the empirical formula of a compound that is $25.9 \% \mathrm{~N}$ and 74.1% O?

Solution:

Assume 100g of compound:
Find \% composition of 1 mol of each element:
$25.9 \mathrm{~g} \mathrm{~N} \times \frac{1.00 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=1.85 \mathrm{~mol} \mathrm{~N}$
$74.1 \mathrm{~g} \sigma \times \frac{1.00 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{gO}}=4.63 \mathrm{~mol} \mathrm{O}$
The ratio $\mathrm{N}_{1.85} \mathrm{O}_{4.63}$ is not a simple whole number ratio.

Reduce the ratio by dividing by the smallest number of moles, in this case, 1.85:
$1.85 \mathrm{~mol} \mathrm{~N}=1 \mathrm{~mol} \mathrm{~N}$ 1.85
$4.63 \mathrm{~mol} \mathrm{O}=2.50 \mathrm{~mol} \mathrm{O}$ 1.85

The ratio is still not whole numbers. Multiply each part of the ratio to get the lowest whole number values:
$1 \mathbf{m o l n x} 2=2 \mathbf{m o l ~ N}$
$2.5 \mathrm{~mol} \mathrm{O} \mathrm{x} 2=5 \mathrm{~mol} \mathrm{O}$
The empirical formula is $\mathrm{N}_{2} \mathrm{O}_{5}$

Practice:

- Calculate the empirical formula of each compound with the following percent compositions:

1. $79.8 \% \mathrm{C}, 20.2 \% \mathrm{H}$
2. $67.6 \% \mathrm{Hg}, 10.8 \% \mathrm{~S}, 21.6 \%$
3. $94.1 \% \mathrm{O}, 5.9 \% \mathrm{H}$
4. $17.6 \% \mathrm{Na}, 39.7 \% \mathrm{Cr}, 42.7 \% \mathrm{O}$
5. $27.59 \% \mathrm{C}, 1.15 \% \mathrm{H},-16.09 \% \mathrm{~N}, 55.17 \% \mathrm{O}$

Key:

1. CH_{3}
2. HgSO_{4}
3. OH
4. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
5. $\mathrm{C}_{2} \mathrm{HNO}_{3}$

Practice:

- Calculate the empirical formula for each of the following compounds without using the \% composition:

6. 29.0 g Ag combines completely with 4.30 g S .
7. 9.03 g Mg combines complefely with 3.48 g N .
8. 222.6 g Na combines completely with 77.4 g 0 .

Key:

1. $\mathrm{Ag}_{2} \mathrm{~S}$
2. $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
3. $\mathrm{Na}_{2} \mathrm{O}$

Calculating Molecular Formula:

The molecular formula of a compound will either be the same as its experimentally determined empirical formula or it will be a simple whole number multiple of it.

Consider the following table:
Formula (Name)Classification Mołar Mass
CH
Empirical
$13 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{2} \mathrm{H}_{2}$ (acetylene) Molecular
$26 \mathrm{~g} / \mathrm{mol}(2 \times 13)$
$\mathrm{C}_{6} \mathrm{H}_{6}$ (benzene) Molecular $\quad 78 \mathrm{~g} / \mathrm{mol}(6 \times 13)$

- The molecular formula of a compound-cắn be found if we know the molar mass and its empirical formula.
The following steps are followed:

1. The empirical formula can be used to calculate the empirical formula mass (efm). (This is simply the molar mass of the empirical formula.)
CH (empirical formula) $12.01 \mathrm{~g} / \mathrm{mol}+1.01 \mathrm{~g} / \mathrm{mol}=13.02 \mathrm{~g} / \mathrm{mol}$
2. Divide the molar mass by the efm. This gives the number of empirical formula units in a molecule of the compounds
CH (empirical formula) $26.04 \mathrm{~g} / \mathrm{mol}$

$$
\text { efu }=\frac{M M}{\text { efm }}=\frac{26.04}{13.02}=2
$$

3. Multiply each element by the empirical formula unit: C x 2, H x 2
The molecular formula is $\mathrm{C}_{2} \mathrm{H}_{2}$
Practice:
Calculate the molecular formulas of the following compounds:

Molar Mass
Empirical Formula
60.0 g
88.04 g
181.5 g $\mathrm{CH}_{4} \mathrm{~N}$
$\mathrm{~N}_{2} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{HCl}$

Key:

1. $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}$
2. $\mathrm{N}_{4} \mathrm{O}_{2}$
3. $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$

Problems:

1. The compound methyl butanoate smells like apples. Its percent composition is 58.8\% C, 9.8\% H and 31.4\% O. If its molar mass is $102 \mathrm{~g} / \mathrm{mol}$, what is its molecular formula?
$\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}\right)$
2. You find that 7.36 g of a compound has decomposed to give 6.93 g of oxygen. The rest of the compound is hydrogen. If the molecular mass of the compound is $34.0 \mathrm{~g} / \mathrm{mol}$, what is its molecular formula?

$$
\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)
$$

